4 resultados para Fault Currents

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Computer programs have been developed to enable the coordination of fuses and overcurrent relays for radial power systems under estimated fault current conditions. The grading curves for these protection devices can be produced on a graphics terminal and a hard copy can be obtained. Additional programs have also been developed which could be used to assess the validity of relay settings (obtained under the above conditions) when the transient effect is included. Modelling of a current transformer is included because transformer saturation may occur if the fault current is high, and hence the secondary current is distorted. Experiments were carried out to confirm that distorted currents will affect the relay operating time, and it is shown that if the relay current contains only a small percentage of harmonic distortion, the relay operating time is increased. System equations were arranged to enable the model to predict fault currents with a generator transformer incorporated in the system, and also to include the effect of circuit breaker opening, arcing resistance, and earthing resistance. A fictitious field winding was included to enable more accurate prediction of fault currents when the system is operating at both lagging and leading power factors prior to the occurrence of the fault.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A second-harmonic direct current (DC) ripple compensation technique is presented for a multi-phase, fault-tolerant, permanent magnet machine. The analysis has been undertaken in a general manner for any pair of phases in operation with the remaining phases inactive. The compensation technique determines the required alternating currents in the machine to eliminate the second-harmonic DC-link current, while at the same time minimising the total rms current in the windings. An additional benefit of the compensation technique is a reduction in the magnitude of the electromagnetic torque ripple. Practical results are included from a 70 kW, five-phase generator system to validate the analysis and illustrate the performance of the compensation technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electric vehicles (EVs) and hybrid electric vehicles (HEVs) can reduce greenhouse gas emissions while switched reluctance motor (SRM) is one of the promising motor for such applications. This paper presents a novel SRM fault-diagnosis and fault-tolerance operation solution. Based on the traditional asymmetric half-bridge topology for the SRM driving, the central tapped winding of the SRM in modular half-bridge configuration are introduced to provide fault-diagnosis and fault-tolerance functions, which are set idle in normal conditions. The fault diagnosis can be achieved by detecting the characteristic of the excitation and demagnetization currents. An SRM fault-tolerance operation strategy is also realized by the proposed topology, which compensates for the missing phase torque under the open-circuit fault, and reduces the unbalanced phase current under the short-circuit fault due to the uncontrolled faulty phase. Furthermore, the current sensor placement strategy is also discussed to give two placement methods for low cost or modular structure. Simulation results in MATLAB/Simulink and experiments on a 750-W SRM validate the effectiveness of the proposed strategy, which may have significant implications and improve the reliability of EVs/HEVs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Power converters are a key, but vulnerable component in switched reluctance motor (SRM) drives. In this paper, a new fault diagnosis scheme for SRM converters is proposed based on the wavelet packet decomposition (WPD) with a dc-link current sensor. Open- and short-circuit faults of the power switches in an asymmetrical half-bridge converter are analyzed in details. In order to obtain the fault signature from the phase currents, two pulse-width modulation signals with phase shift are injected into the lower-switches of the converter to extract the excitation current, and the WPD algorithm is then applied to the detected currents for fault diagnosis. Moreover, a discrete degree of the wavelet packet node energy is chosen as the fault coefficient. The converter faults can be diagnosed and located directly by determining the changes in the discrete degree from the detected currents. The proposed scheme requires only one current sensor in the dc link, while conventional methods need one sensor for each phase or additional detection circuits. The experimental results on a 750-W three-phase SRM are presented to confirm the effectiveness of the proposed fault diagnosis scheme.